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Abstract 

This paper examines the effect of highly persistent processes on methods of evaluating 

the out-of-sample predictions of nested models. The non-parametric bootstrap method of 

Hubrich and West (Journal of Applied Econometrics, 2010) is modestly undersized for 

stationary processes, but I find that their method becomes oversized as the process 

examined approaches the unit root boundary. I also find size distortions in several other 

leading forecast evaluation procedures [e.g., Giacomini and White (Econometrica, 2006), 

Hansen (Journal of Business & Economic Statistics, 2005), Harvey and Newbold 

(Journal of Applied Econometrics, 2000), and White (Econometrica, 2000)]. I use 

simulation-based techniques to demonstrate that the Maximized Monte Carlo (MMC) 

method of Dufour (Journal of Econometrics, 2006) corrects for the over-rejection of the 

null even with highly persistent processes and small sample sizes. The MMC method 

exhibits good power properties, although in this study, the MMC procedure becomes 

more conservative as sample sizes increase. 

n 
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1 Introduction 

1 

This paper examines the effect of highly persistent processes on encompassing tests 

of out-of-sample predictions. Bootstrap procedures can become inconsistent, or even 

invalid, under certain conditions like near the unit root boundary [cf. Andrews (2000) and 

Mikusheva (2007)]. This indicates that bootstrap procedures on out-of-sample prediction 

tests [Giacomini and White (2006), Hubrich and West (2010), and White (2000)] in the 

presence of highly persistent data can also be inconsistent. This paper demonstrates that 

the maximized Monte Carlo (MMC) method of Dufour (2006) is an option to correct for 

this bootstrap inconsistency. 

Comparison and ranking of forecast model options is a natural extension of 

developing forecasting models. A general method of comparing models for their 

forecasting ability is to divide the sample into two distinct periods: in-sample and out-of-

sample periods. The in-sample period is used to identify model parameters that are 

subsequently used to generate the out-of-sample predictions. Prediction errors are the 

difference between the predicted value and actual value, and the series of prediction 

errors are the basis for evaluating forecasting models. There are several methods for 

manipulating these prediction errors to assess predictions between models: the two most 

common are absolute and squared differences; this study will focus on tests related to the 

latter. 

Two streams of tests have developed in the last 15 years. The first class of out-of-

sample prediction tests are related to non-nested models, which include, but are not 

limited to, tests developed by Diebold and Mariano (1995), West (1996), Harvey, 

Leybourne and Newbold (1998), White (2000), and Hansen (2005). To generalize this 
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class of tests, they compare the difference of the mean squared prediction errors (MSPE) 

between two models. Commonly, the tests measure the benchmark model MSPE less the 

MSPE of an alternative model, so a positive difference indicates that the alternative 

model has better predictive ability over the benchmark, and vice versa. These tests differ 

from the second class of tests based on nested models, examined by West (1996), Clark 

and McCracken (2001) and Clark and West (2007), which is described as the MSPE of 

the benchmark model less the prediction error covariance of the benchmark and 

alternative models. This type of test is an encompassing test (denoted as ENC), meaning 

that no additional information is provided by the alternative model over the parsimonious 

benchmark model. This study presents a small set of nested models, so it is this second 

class of test statistics that are used primarily in this study. The test statistic of interest is a 

t-test (ENC-t) put forth by Harvey, Leybourne and Newbold (1998), examined in detail 

by West (1996) and Clark and West (2007). 

West (1996) showed that both classes of tests, specifically the t-statistic type (MSPE-t 

and ENC-t), when applied to non-nested models converge asymptotically to the standard 

normal distribution. For nested models, the predicted errors are asymptotically the same: 

West (1996) and Clark and McCracken (2001) showed that both test types converge in 

distribution to specific functions of Brownian motion, and the mean and the variance of 

both tests converge at the same rate but to nonstandard distributions (West, 1996). Clark 

and West (2007) found that, for nested models, the critical values for the ENC-t statistic 

could be approximated by the standard normal critical values, erring on the moderately 

conservative side, but this was not true for MSPE-t. It was also observed that the 
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distributions were affected by the number of regression observations (R) and the number 

of prediction periods (P) in finite samples. 

The Clark and West (2007) findings were used by Hubrich and West (2010), to 

develop a nonparametric bootstrap method to examine a small set of nested models. In 

brief, using the variance-covariance matrix of the data generated ENC series to randomly 

draw many replicated ENC series from the multivariate normal distribution. The 

replicated series are used to compute a set replicated ENC-t statistics from which the rank 

of the original ENC-t in the ordered replication set determines its p-value. Hubrich and 

West (2010) found that their bootstrap procedure was modestly conservative, consistent 

with Clark and West (2007), in their first order autoregressive data generation process 

based simulations [DGP-AR(l)]. 

It has been well documented that bootstrap methods can become inconsistent in the 

presence of unknown nuisance parameters. Andrews (2000) showed that several 

bootstrap methods, when a parameter is on the unit root boundary, can be inconsistent. 

Mikusheva (2007) also showed that certain types of bootstrap methods are not consistent 

in the presence of unit roots. Pre-testing for a unit root test can yield mixed results, due 

to low power of many of the standard unit root tests in small samples. 

The following figures examine the simulation effects of higher persistence of the 

DGP-AR(l) process (50,000 replications). In figure 1, the normal critical values 

(vertical lines) are appropriate for the level of persistence used in the Hubrich and West 

1 Figures 1 and 2 present the PDF curves: at the request of a reviewer, an appendix 

presents the complementary CDF curves. 
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(2010) study, where R=100 and P=\00. As the lag dependent parameter approaches the 

boundary (0 99 in these simulations) the standard normal critical values become 

oversized. Specifically, the standard normal 0.10 and 0.05 critical values correspond to 

an oversized ENC-t statistic of 0.152 and 0 088, respectively, in the highly persistent 

process simulations. 

Figure 1: Simulated PDF curves for ENC-t at different levels of persistence 

in •* co 
• i i 

PDF(0 99) • PDF(0 50) 

CM co -^ in 

PDF Standard Normal 

Notes All distributions presented are simulated The Standard Normal PDF is generated from 500,000 

draws from the normal distribution The ENC-t distributions are based on 50,000 simulations of the 

ENC-t statistic for a single alternative model versus a benchmark model that is the null DGP The 

simulation design is outlined below in section 3, with 0 99 and 0 50 representing the lag dependent 

coefficient in the null DGP, rolling window of 100 regression observations with 100 one-step-ahead 

Definition and discussion of size and power are provided in an appendix 
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predictions. Solid and dashed vertical line are the right-tailed 90 and 95' percentile cut-offs for the 

standard normal distribution, respectively. 

Figure 2 illustrates the effect of the varying P and R, both separately and individually, 

which are consistent with the asymptotic properties identified in West (1996). An 

increase in P relative to R shifts the simulated mean to the right and increases the 

simulated variance, which increases the number of rejections based on the standard 

normal critical values, again 0.10 and 0.05, for the ENC-t statistic to 0.231 and 0.141, 

respectively. As R increases relative to P the simulated mean shifts to the left, correcting 

for the higher simulated variance. Thus, a greater number of regression periods are 

required to correct for highly persistent processes. As both R and P increase, maintaining 

a fixed ratio (in these simulations P/R =1), both the simulated mean and variance are 

reduced with the net result of relatively fewer rejections of the null hypothesis. 

Figures 1 and 2 demonstrate that approximating the ENC-t critical values using the 

standard normal critical values in highly persistent processes will result in over rejection 

of the null. Bootstrap methods that rely on either draws from an assumed standard 

normal or mean zero probability density function will likely over reject in small sample 

highly persistent data. 

The following simulation study examines the use of the maximized Monte Carlo 

(MMC) method of Dufour (2006) to correct for the over rejection of the null, so as to 

provide sufficient size control in forecast model assessment for finite, highly persistent 

data processes. The MMC method does not rely on the standard limiting distributions of 

the test statistic, only that all nuisance parameters of the statistic have been identified and 

the limiting distribution can be simulated in the presence of these nuisance parameters. 
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Figure 2: Simulated ENC-t PDF varying P and R, highly persistent processes 
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Notes: See Figure 1 notes for simulation specifics. The distributions are based on simulations where 

the lag dependent parameter is 0.99, and the number of regression observations (R) and one-step-ahead 

predictions (P) vary. 

The remainder of the paper is as follows: section 2 describes the computation of the 

statistic ENC-t and maxENC-t, also detailing the MMC method and the comparator 

bootstrap methods including Hubrich and West (2010), Giacomini and White (2007), 

Harvey and Newbold (2000), and White (2000). Section 3 outlines the simulation design, 

and section 4 provides the simulation results. The final section brings together the 

findings of the paper and discusses opportunities for future work. 
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2 Econometric Procedure 

The econometric procedure applied in this study is an extension of the one outlined in 

Hubrich and West (2010), with the addition of examining models that are nested near the 

boundary. The structure is as follows: there is a null, or benchmark, model and m 

alternative and competing models, each of which is used to predict the objective, yt. It is 

assumed that the entire set of alternative models nest the null model and it is not required, 

or forbidden, that any individual alternative model nests any of the other alternative 

models. The set of all models will be denoted with /, where i=Q, I ... m, and the set of 

alternative models are denoted withy, where7=1, ... , m. The number of alternative 

models will be kept at two for descriptive purposes only (ra=2), but the methodologies 

presented below can easily be expanded to allow for more alternative models (m>2). 

Note that in the Hubrich and West (2010) not-for-publication appendix, the authors 

present their simulated critical values for the case involving two alternative models, 

through the range of ENC covariance from -1 to 1. Thep-values simulated in this paper 

are based on their simulation procedure, not their tabulated critical values. 

The models considered are forecasting models, so a given prediction, yt+\, is based on 

a set of historical information used to estimated parameter(s). There are two common 

types of information sets, rolling and recursive windows. The rolling window is based on 

a fixed number of observations used to estimate the model parameters, while the number 

of observations increases in the case of the recursive window information set. Let the 

information set, *Fj1 at time t for model i, consist of the current and past observations of 

the variable of interest, yt, and relevant independent variables known at time t, Xit. In 

the case of the recursive window, all information is used including information back to 
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t=0. The rolling window conditions the number of historical periods in the following 

manner: 

^i,f|/? ={yt>->yt-R'Xi,t>->xi,t-R-U- (!) 

This paper examines a small set of nested models, so appropriately focuses on ENC-

type statistics, specifically the ENC-t test, examined by Clark and West (2007) and West 

(1996). Simulations using alternative loss functions are also examined and presented in 

the discussion below. One specific variant is the maxENC-t used to examine multiple 

alternative models (ra>l) against a single benchmark model by comparing the maximum 

ENC-t statistic computed from the alternatives and comparing it to the critical values. 

Several distinct procedures are used to evaluate the null model: the maximized Monte 

Carlo method (MMC); the non-parametric bootstrap method (HW) presented by Hubrich 

and West (2010); the conditional predictive ability (CPA) method outlined by Giacomini 

and White (2007); the test of equal predictive ability (EPA) from Harvey and Newbold 

(2000); the Reality Check (RCMSE) from White (2000); Hansen (2005) student-adjusted 

Reality Check (RCMSEt), an ENC variant of White's Reality Check (RCENC), and 

finally, an ENC variant of Hansen's student-adjusted Reality Check (RCENCt). 

It is important to note at this point that the tests differ in their null and alternative 

hypotheses. Some of the tests are t-statistic type tests (MMC, HW, RCMSE, RCMSEt, 

RCENC, and RCENCt) which allow for right-tailed critical regions, whereas the other 

tests are %2-distributed and F-distributed and as such are effectively two-tailed statistics. 

This distinction is important because a right-tailed test determines if there exists an 

alternative model that is significantly better than the benchmark model. The two-tailed 

test identifies whether there exists a model, including the benchmark model, which 
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surpasses all other models. The hypotheses are presented formally in subsequent 

sections. 

2.1 ENC-tTest 

Let Tbe the sample size, where T=(R+l)+P+(x-l) and R is the rolling window size, P 

is the number of prediction periods, and x is the number of steps ahead to a prediction. 

This paper is based entirely on one-step-ahead predictions (T=1) but this is not a limiting 

restriction. The in-sample OLS coefficient estimate, assuming a rolling estimation 

window, is given by: 

Pi,t\R = 0LS\?i,t\R I Xi,t-\>-> Xi,t-R-l\- (2) 

The current period independent variables, Xit, are excluded from the estimation process 

because these are used to predict the one-step-ahead out-of-sample prediction given by, 

9i,t+l\t,R = Xi,tfii,t\R • (3) 

The one-step-ahead prediction errors are: 

^i,t+\\t,R = yt+l - 9i,t+l\t,R • (4) 

The previous three steps are repeated from t=R to t=T-\ to obtain P predicted errors that 

are used to compute the MSPE for each model by: 

t=R 

The adjusted-MSPE, described in Clark and West (2007), is computed as: 

T 
d)\R = &j\R _ j P _ 1 ll(yO,t+l\t,R ~ 9j,t+l\t,Rf . (6) 

t=R 

or equivalently: 
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°\R = P l Y.(2ij,t+l\t,R^0,t+l\t,R -So,t+l\t,Rl- W 
t=R 

This can be broken down into the ENC time series: 

fj,t+l\tR = S0,t+l\tR ~ *j,t+l\tR + \yO,t+l\tR ~ 9j,t+l\tR ) > (8) 

simplifying to: 

fj,t+l\tR = 2\S0t+\\tR ~ ^Ot+l\tR^j,t+l\tR ) • (9) 

The mean of the ENC time series can be written as: 

T 

fj\R=p~iJLht+l\t,R- (10> 

t=R 

The variance of the ENC time series is: 

T 

*j\R=p~lt,{fj.t+l\tR-fj\*T <n> 

t=R 

The previous two equations are combined to compute the t-type statistic, ENC-t, 

dependent on the choice of rolling window size, resulting in: f -i 
ENC-tj]R=Pl/2^L. (12) 

This statistic is used to examine pair-wise model comparison, where Clark and West 

(2007) found that the critical values of the limiting distribution for ENC-t are similar to 

the standard normal distribution, when all the alternative models nest the benchmark. 

Hubrich and West (2010) utilized this finding to develop a methodology that would 

allow the analyst to identify if at least one alternative model, in a set of alternative 

models, surpasses the benchmark model in predictive ability. Hubrich and West propose 

the use of the maxENC-t statistic, a right-tailed test, to evaluate multiple models at once: 
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max ENC-tR=max(ENC-tj\R). (13) 

The null and alternative hypotheses for the maxENC-t test are stated as: 

H0:(T^R-(72
AR=0 

l 7 » \ for all alternative models. 
HA:max[crolR-aJlR)>0 

j ' 

The maxENC-t statistic is also used in the maximized Monte Carlo method presented 

below. 

2.2 Maximized Monte Carlo Test Procedure 

The Monte Carlo (MC) test procedure is summarized based on the methodology and 

theory presented in Dufour (2006), which is a formal presentation of Dwass (1957) and 

Dr. Barnard's discussion on Bartlett (1963). The test statistic of interest will be denoted 

as S, and is a right-tailed test. 

The test statistic obtained from the data is denoted as So, and can also be identified as 

the null statistic. Simulation of the hypothesized null data generation process (DGP), 

using N independent draws of error terms from the standard normal distribution4, making 

it possible to generate N simulated test statistics, denoted Sw, where w=l, ... , N. The 

3 For convenience in this subsection, S will represent the maxENC-t. The maxENC-t 

statistic is right-tailed, which is consistent with the following presentation. The MC 

method can be altered to accommodate both left-tailed and two-tailed test hypotheses. 

4 Standard normal draws are used in this study; this is not a limitation as it not preclude 

draws from other distributions. 
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following subsection outlines the maximized Monte Carlo (MMC) test procedure, 

where a MMC p-value of a test statistic is calculated that depends on the set of nuisance 

parameters, <fn. The subsequent subsection outlines special cases of the MMC p-value 

procedure. 

2.2.1 MMCp-value 

Nuisance parameters are any estimated or assumed components of the hypothesized 

null DGP that affect the limiting distribution of the statistic of interest. They can include 

the coefficients, standard deviation of the error terms and even the assumed error 

distribution (i.e., not standard normal errors). Identification of the set of nuisance 

parameters, if the theoretical set is not defined, can be accomplished with some ease by 

simulating the null DGP and varying each potential nuisance parameter separately, which 

identifies the nuisance parameters as the components that change the test statistic. The 

set of identified nuisance parameters are denoted as %n = {^j,...,^ }, where k represents 

the total number of nuisance parameters identified, and %n e Qn where Qw is the set of 

all possible permutations of £,n, or nuisance parameter space. 

The MMC /?-value, p^ (SQ \ E,n), is computed from null statistics obtained from the 

data, the test statistics from the simulated cases, and maximized with respect to the 

nuisance parameters in the following manner: 

PiV (^o I #w) = SUP 

rGN{s0\tn)+^ 
N + l 

(14) 

where the G^ (SQ \£n) is the number of the simulated statistics that equal or exceed the 

null statistic, 
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N 

7=1 

and [̂o,oo] {Sw - SQ \ <f„) is an indicator function given by : 

, . f l , i / xe A 
/ A W = L ; _ • (i6) 

[0, if x<£ A 

The computed p-value is then tested against the critical region: 

PN(SO \£n)-
a> where 0 < « < 1 . (17) 

Normal gradient-based maximization methods are ineffective at maximizing the MMC p-

value, because both N and GN (SQ \ £n) are integers resulting in non-differentiable points 

in pN(SQ \£n). A non-gradient-based maximization routine that is effective for 

functions with plateaus, multiple local maxima, and non-differentiable points is simulated 

annealing by Tsionas (1995). 

The primary benefit of using the MMC p-value procedure is that it is asymptotically 

valid even when the asymptotic null distribution is non-standard and dependent on 

nuisance parameters. The two main requirements of the MMC procedure are that all the 

nuisance parameters (and bounds) have been identified, and the null distribution of the 

statistic can be simulated conditional on the nuisance parameters. 

One of the drawbacks of this procedure, for a simulation study, is that it is expensive 

in terms of the computational time, due to the requirement for a non-gradient 

Modifying the indicator function changes the MMC test to either a right- or a two-tailed 

tests. 
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optimization routine. Also, the set up of null model for simulation presents some cost 

in terms of time. The time required diminishes substantially for a single call to simulated 

annealing, which is the case when examining a real world example. 

2.2.2 MC p-value Special Cases 

Dufour (2006) also outlines several other variants of the MMC p-value procedure. 

The first of these is the case where the set of nuisance parameters equals the null set, 

following the notation in the previous section £,n = {o}. Since the MMC p-value is 

invariant there is no requirement to maximize the function and the earlier equation 

simplifies to the MC p-value test: 

Ms„)=^%&ki. (18) 

If the nuisance parameter space is very large, Dufour puts forth the option of using more 

liberal methods whereby the nuisance parameter space is replaced with a consistent set 

nuisance parameter space, Qc
n e Qn. The function from the previous section is then 

maximized over this consistent set to obtain the consistent set estimate MC (CSEMC) p-

value. The consistent set can be reduced further by determining a consistent point 

estimate of nuisance parameters, which eliminates the requirement to maximize the MC 

p-value, to obtain the Local MC (LMC) p-value. Commonly, the nuisance parameter 

values obtained from the computation of So are set as the consistent point estimates for 

the LMC method; Dufour shows that the LMC is equivalent in outcome to a parametric 

bootstrap. It is easy to see since the LMC and CSEMC p-value tests have nuisance 
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parameter estimates that are in the set of nuisance parameters in the MMC, so a 

rejection for LMC or CSEMC is also a rejection for MMC.6 

2.3 Hubrich and West (2010) 

Hubrich and West (2010) present a non-parametric bootstrap method which exploits 

the Clark and West (2007) proposition that the adjusted squared predicted errors 

(adjusted SPE) have critical values very close to the standard normal critical values. 

Their bootstrap method draws K simulated ENC, fk,p\Q., based on the multivariate 

normal distribution consistent with the variance covariance matrix of the stacked ENC 

time series matrix representation (time in rows), so: 

V = P~ 

fl,t+l\t,R 

fm,t+\\t,R 

fl,t+\\t,R 

Jm,t+\\t,R 

(19) 

The simulated ENC are used to produce K simulated maxENC-h statistics.7 The 

simulated statistics can then be used to identify the critical value for a specified level, or 

obtain an approximation of the p-value of the null maxENC-to. 

The covariance of adjusted squared predicted errors affects the asymptotic limiting 

distribution of the maxENC-t statistic. For this Hubrich and West provide the table of 

This feature is exploited as a time saving technique. 

n 

The number of simulations, K, needs to be large enough. In keeping with the Hubrich 

and West procedure I use 50,000 simulations to approximate the asymptotic limiting 

maxENC-t distribution. 
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asymptotic critical values for two alternative models in their not-for-publication 

appendix. For more than two alternative models, tables of asymptotic critical values are 

not available due to complicated covariance relationships; their simulation method must 

be replicated. 

2.4 Conditional Predictive Ability 

The Conditional Predictive Ability (CPA) test put forth by Giacomini and White 

(2007) is a Wald type test of the loss function of each model put forth. The CPA test 

statistic is computed in the following manner: 

CPAR=PF'V~1F, (20) 

where V is computed in the same manner as the previous section, and F is the stacked 

mean ENC time series matrix representation, specifically: 

fl\R 

fm\R 

(21) 

ASY 
Giacomini and White provide evidence that CPAR ~ x (m) a nd a s s u c n m e critical 

values can be obtained directly from the standard %2(m) tables. This test, unlike the 

maxENC-t statistic, is a two-tailed test, so the null hypothesis for CPAR is that all the 

variance in predicted errors are equal with a two pronged alternative where either (i) at 

least one alternative model is a significantly better predictor than the benchmark model, 

or (ii) the benchmark model is a better predictor than at least one of the alternative 

models. Stated formally, the two hypotheses are: 
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HQ-<7l\R-<7)\R=0 

for all alternative models. 
HA : VolR-^JlR >0 

Hubrich and West (2010) used this same design with the expectation of over rejection of 

the null, which was the case caused by the second part of the alternative hypothesis. It 

should also be the case near the boundary that this test is oversized for two reasons: (a) 

the second part of the alternative hypothesis, and (b) the assumption of ENC-t sharing 

critical values with the standard normal distribution. 

2.5 Equal Predictive Ability 

Harvey and Newbold (2000) put forth four related test statistics, all of which are 

designed to identify Equal Predictive Ability (EPA) between competing forecast models. 

Three of the tests are regression-based, where the predicted errors of alternative models 

less the benchmark model, are regressed against the benchmark model's predicted errors. 

The null hypothesis for these statistics is that all the estimated parameters are not 

significantly different from zero and, therefore, no alternative model provides any 

additional information over the benchmark model. These tests, however, are not 

appropriate because in the case of nested models, all the alternative forecast errors 

converge to the benchmark errors as R increases. With large enough estimation ranges, 

the OLS estimator may not be able to invert the regressor matrix. 

The fourth test statistic, EPA, is very similar to the CPA statistic from the previous 

section, with some subtle differences: (i) a modified Diebold-Mariano (1995) statistic, (ii) 

adjustment for number of models, as proposed by Harvey and Newbold (2000), resulting 
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in an F distributed statistic with Fm_/,p.m+i critical values. The EPA is an encompassing 

loss function intended for nested model examination. It is computed as: 

dj,t+l\tR = [*0,t+l\tR ~ Co,t+l\tR*j,t+l\tR } • ( 2 2 ) 

The mean loss for each model is given by: 

dj\R=P lLdj,t+l\t,R ' 
t=R 

with a stacked matrix representation, this is: 

(23) 

D = 

dl\R 

d m\R 

(24) 

The sample variance is computed as: 

Vd=(P-l) -1 
d l,t+l\t,R 

dm,t+l\t,R 

dl,t+l\t,R 

dm,t+\\t,R 

(25) 

The Equal Predictive Ability statistic is computed from the above components as: 

R (P-l)(m-l) d (26) 

Harvey and Newbold (2000) found this statistic to have fairly good size control, which 

was robust even under non-normal predicted errors (multivariate Student's t-distribution 

of varying degree). It is expected that this will over reject under highly persistent data for 

two main reasons: (1) it is a two-tailed test, and (2) the assumption that the F distribution 

critical values are correct. 
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2.6 White's Reality Check (2000) 

White's Reality Check is one of the most prominent comparator procedures in the 

literature; making it the benchmark procedure. As defined in White (2000), the 

procedure uses the MSPE as a basis of model comparison, which as discussed earlier is 

problematic when all the alternative models nest the benchmark model due to non­

standard limiting distribution. It is expected that this will make it an inappropriate test 

procedure for this analysis, but the procedure as outlined by White has been included in 

the examination due to its benchmark status.8 For this study, the Reality Check (RCMSE) 

is implemented in the process outlined in White (2000), implemented with the stationary 

bootstrap of Politis and Romano (1994). Hansen (2005) provides an enhanced version of 

the Reality Check, applying a student-type adjustment (RCMSEt), which improves upon 

White's version in terms of power, while retaining similar size properties. 

To correct for the inappropriateness of MSPE as the basis of computing the p-values 

from the Reality Check, a variant of the Reality Check is introduced on the basis of the 

ENC loss function (RCENC). Intuitively, this should improve the consistency of the 

Reality Check due to the use of a loss function that is more appropriate when comparing 

nested models. This study does not examine the validity of this variant, but the Clark and 

West (2007) findings of lower variance in the first moment combined with near standard 

Several other procedures also utilize MSPE, precluding them from inclusion in this 

study, specifically Harvey, Leybourne and Newbold (1998), and Diebold and Mariano 

(1995). 
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normal critical values provide promise asymptotically. Smaller samples with high 

persistence are expected to exhibit similar bias as the other bootstrap procedures 

examined. A student-type adjustment is also implemented for this new test (RCENCt), 

which one would expect the standardization to once again improve power. 

The following outlines the computation of White's Reality Check (RCMSE), 

Hansen's version (RCMSEt), and both encompassing based reality checks (RCENC and 

RCENCt). The predicted errors, eit+\\tR, are identical to ones described in equation 4. 

White (2000) uses the difference in the squared predicted errors as the basis of his Reality 

Check, generating a time series of the SPE differences: 

fj,t+\\tR = \t+\\tR ~ ej,t+l\tR ' (2?) 

and the mean is given by: 

T 

fj\R=P~lYfj,t+l\t,R- (28) 
t=R 

White's primary statistic is given by: 

Vj\R = 4Pfj\R • (29) 

The largest of these in the set of i is the statistic of interest, computed as: 

Vmax|/? =max(vi|fl>^2|fl>-" .Vm|/?)- (30) 

White uses the stationary bootstrap of Politis and Romano (1994) to generate Q 

replications of equation 27, denoted as f jnj+\\t,R > where q=l,...,Q. The mean of each 

replication is given by: 

T 

fj,q\R=p X,fj,q,t+i\t,R> (31) 
t=R 
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which is used to compute the deviation of the replicated mean from the respective 

model mean: 

vt,\R=MfUR-fj\R)- 02) 

These Q replications are sorted from lowest to highest for each model separately: 

V*\R = ordered\*q\R \. (33) 

The ordered-pair-wise maximum of all replications is determined, recursively, by 

determining the pair-wise maximum beginning with the first two replications, sorting the 

maximum from lowest to highest, then compare the current maximum with the next 

model, and repeat until the last model (m). The recursive steps are: 

Vu,q\R =maxYu,q\R>Vu-l,q\R\> a n d (34) 

Vuq\R = orderedyuq\R ] where u ranges from 1 and m. (35) 

White's Reality Check p-value is computed by determining the number of elements in 

Vm\R that equal or exceeds the value of Vmax\R and dividing by Q. 

Hansen's Reality Check is procedurally identical to White's, with the exception that 

Hansen's test statistics use different variants of equations 29 and 32, which will be 

denoted below as 29a and 32a. Two variances are computed, the first is: 

w2,R = P~l J^\fP\fj,t+\\tR ~ fj\R)\ ; a n d t h e second is: (36) J\R 
t=R 

T 
Jj,q\R! - P AJyP\fj,q,t+\\tR ~fj\R). 

t=R 

The student-adjustment of equation 29 is, 

(37) 
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VjlR^—r^, (29a) 
WJ\R 

and the set of stationary bootstrap replicated statistics are given as: 

v* , -^li\R~h\R) n 2 f lx 
Vj,q\R~ • ( j 2 a ) 

WJ,q\R 

The remainder of the computation of Hansen's Reality Check p-value follows the same 

process as White's Reality Check. 

The ENC-based Reality Checks follow the same methodology of White and Hansen, with 

the only difference in equation 27 in the following manner: 

fj.t+l\tR = %,t+\\tR ~ tj,t+\\tR + \*0,t+l\tR ~ Sj,t+l\tR) • ( 2 7 a ) 

3 Simulation Design 

The presented Hubrich and West (2010) simulations use an AR(1) data generation 

process (DGP) where the null model parameter is 0.5. The simulations below use the 

same framework as Hubrich and West (2010) but increase the null model parameter to 

0.99, which introduces a much higher level of persistence into the DGP. Hubrich and 

West (2010) acknowledge that their examination of US inflation may exhibit high 

persistent conditions; they cite the findings of Hendry and Hubrich (2011) in inconsistent 

ADF unit root results for different time periods in inflation series. I examine the 

possibility that their bootstrap method may be biased, due to the highly persistent nature 

of inflation data in combination with their in-sample and out-of-sample settings. 

The objective of the simulation is to determine whether or not disaggregate 

components provide additional information when forecasting highly persistent aggregate 
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data. Consider the aggregate series yt as the sum of D disaggregate components, y^t 

where d=\,...,D, specifically: 

D 

yt = Hyd,f (38) 

7=1 

The benchmark model and m=2 alternative models (or m=4 alternative models) that nest 

the benchmark in the following manner: 

the benchmark is yt = const. + /?o,0,?LK^-l + e0,t' anc^ (39) 

the alternative j is yt = const. + Poj,t\Ryt-i + P\j,t\Ryi,t-\ +ej,t > (40) 

for 7 = 1 and 2. 

The DGP for the disaggregates of yt is a VAR of order 1 with a D x D matrix of 

autoregressive parameters, O, a mean vector ju = (//j, pL2, •••>MD ) w n e r e Md = 1 f° r a^ >̂ 

and zero mean i.i.d. normal disturbances Ut = (wj t,u2 f ,.••"/) ?) so: 

Yt = (yi,t>y2,t>->yD,t) =M+®Yt_l+ut. (4i) 

For the determination of size for each of the test statistics with persistent data, I assume a 

common value of 0 = 0.99 as the diagonal elements of <E>, and D=3, specifically: 

o = 
0.99 0 0 

0 0.99 0 

0 0 0.99 

(42) 

Furthermore, each disaggregate of yt follows an AR(1) process. Since yt is the 

arithmetic sum of the disaggregates, it too will follow an AR(1) process with a lag 

parameter value, (/> = 0.99 . 
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In the power simulations, it is assumed that at least one of the disaggregate 

components Granger causes the aggregate in (42), and as such 4> is updated to9 

<D = 

0.99 -0.008 0 

0.2 0.5 0 

0 0 0.99 

(43) 

This design allows for high persistence in two of the series, and weaker persistence in the 

other disaggregate.10 

A similar design is used when the number of alternative models is expanded to m=4 

and the number of disaggregates also expands to D=4. In this case, the size simulations 

in the matrix in (42) are increased to 4 x 4 with </> = 0.99 on the diagonal. In the power 

simulations, the matrix in (43) is augmented to11: 

0.99 -0.008 0 0 

0.2 0.5 0 0 

0 0 0.99 0 

0 0 0 0.99 

O: (44) 

The choice of O for the power simulations has an effect on the power results. Power is 

greatly diminished if the diagonal elements remain at 0.99, because there is little leeway 

in the off diagonal elements that preserve stationarity of the system. So 0.5, 0.2 and 

-0.008 were used to allow for observable and comparable power results. Even with one 

stationary disaggregate, the estimation of the aggregate parameter continued to be 

dominated by the 0.99 parameters. 

10 The eigenvalues of the matrix in (32) are: 0.98671264, 0.50328736, and 0.99. 

n The eigenvalues of the matrix in (33) are: 0.98671264, 0.50328736, 0.99, and 0.99 
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For both the size and power simulations, 1000 replications of the null DGP are used to 

compute the /^-values associated with each test, and other test specific settings follow. 

The MMC procedure allows for some flexibility, for the simulation study N=99, and 

the simulated annealing program was edited to reduce computation time. Specifically, 

if the evaluation of the p-value exceeded the nominal size (a) then the simulated 

annealing procedure was halted and returned identifying to retain the null hypothesis.13 

The maxENC-t test statistic from the null DGP was determined through simulation to be 

invariant to: the standard deviation of the error term draws (Ut), constant term (\i), and 

initial value of the disaggregates (y^ Q). The only nuisance parameter identified is the 

common value <j>. 

The Hubrich and West (2010) procedure was followed closely, with the rank of the 

null statistic identified in relation to 50,000 replications of the adjusted squared predicted 

errors. The precise p-value was not required for the simulation study, so time saving 

TV can also take on values of 19 or 199 with little change to the simulation results. To 

decrease simulation time N=19 was chosen for the R=400 tests. For R=400, P=100, and 

m=2, the empirical size was determined as 0.031 for N=99 and 0.030 for N=19, also the 

power results were 0.510 and 0.497, respectively. An appendix table provides the 

simulation comparison for R=200, for both size and power. 

13 Another time saving option not used in this study is to limit the clock time for a single 

call of simulated annealing; this is usually more appropriate when there are a large 

number of nuisance parameters. 
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techniques were used to avoid having to simulate all 50,000 replications every time.14 

The asymptotic tabulation of critical values for ra=2, provided in their not-for-publication 

Appendix, were not used in this simulation study; instead the author's 50,000 replications 

procedure for both m=2 and m=4 was used. 

The critical values for the CPA test are taken from the standard x (m) a t m e 10 per 

cent level. The critical values for the EPA test are taken from the standard Fm_/;p_m+; 

distribution at the 10 per cent level. 

All four reality check simulations, RCMSE, RCMSEt, RCENC and RCENCt, use 

1000 stationary bootstrap replications, with the geometric mean block size of 2, which is 

consistent with Hubrich and West (2010) and White (2000). 

4 Simulation Results 

The simulation results are displayed in the following two tables for empirical size and 

power, respectively. The MMC method, shown in Table 1, provides a significant 

measure of size control under the conditions examined, whereas the other procedures 

tested exhibit oversized or inconsistently sized results. The size results for smaller values 

of R are modestly conservative, becoming more conservative as R increases. The 

The first time saving technique was to stop the replications and accept Ho if the null 

statistic's rank exceeded critical number (oc*50,000). The second time saver would stop 

the replications and reject the null if there were too few replications remaining for this 

decision to change. 
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simulations indicate that the MMC method is robust to increases in the number of 

alternative models (m). It also exhibits good size stability as P increases for a given R 

The Hubrich and West (2010) bootstrap approach is oversized for all combinations of 

R, P and m examined in this study. The empirical size rises as P increases, which is 

expected based on the shift in the simulated distribution presented in Figure 2. It also 

increases in m, but the rise is modest for the small set of models examined in this study. 

As R increases, the severity of the oversized results diminish in their nonparametric 

bootstrap method, to the point that it is almost correctly sized with R=400, m=2 and for 

all the values of P tested. It appears that the asymptotic properties of the Hubrich and 

West (2010) method may be recovered with large enough values of R. 

The CPA method's empirical size results are considerably oversized for all 

combinations of R, P and m in this examination. Unlike Hubrich and West (2010), the 

CPA size results do not exhibit any consistent patterns. For m=2, size results generally 

improve as R increases, but this is not the case when m=4 where patterns are erratic. The 

increase in the number of alternative models uniformly increases the empirical size, but 

with differing relative increases. When m=4 and R>40, an increase in P results in an 

improvement in the empirical size, but this pattern, in the ra=2 results, is only apparent 

for i?=100 and R=200. Hubrich and West (2010) found that the empirical size of the 

CPA was higher than that of the maxENC-t, but this is not the case for the results shown 

in Table 1. This is somewhat surprising since CPA is a two-tailed test and maxENC-t is 

one-tailed. 
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Table 1: Empirical size for nominal 0.10 tests for one-step-ahead predictions 

m=2 m=4 
P = 40 P=100 P = 200 P = 40 P=100 P = 200 

R = 40 

R=100 

R = 200 

R = 400 

MMC 
HW2010 
CPA 
EPA 
RCMSE 
RCMSEt 
RCENC 
RCENCt 

MMC 
HW2010 
CPA 
EPA 
RCMSE 
RCMSEt 
RCENC 
RCENCt 

MMC 
HW2010 
CPA 
EPA 
RCMSE 
RCMSEt 
RCENC 
RCENCt 

MMC+ 
HW2010 
CPA 
EPA 
RCMSE 
RCMSEt 
RCENC 
RCENCt 

0.076 
0.183 
0.173 
0.339 
0.060 
0.060 
0.223 
0.237 

0.068 
0.168 
0.232 
0.413 
0.115 
0.121 
0.217 
0.227 

0.067 
0.132 
0.210 
0.389 
0.113 
0.129 
0.188 
0.205 

0.024 
0.113 
0.165 
0.363 
0.111 
0.125 
0.142 
0.157 

0.089 
0.258 
0.200 
0.382 
0.027 
0.028 
0.287 
0.297 

0.067 
0.161 
0.166 
0.352 
0.047 
0.050 
0.229 
0.243 

0.061 
0.143 
0.195 
0.373 
0.081 
0.085 
0.170 
0.185 

0.030 
0.112 
0.170 
0.363 
0.096 
0.113 
0.151 
0.167 

0.092 
0.332 
0.238 
0.425 
0.005 
0.005 
0.348 
0.369 

0.081 
0.226 
0.174 
0.365 
0.031 
0.030 
0.280 
0.286 

0.063 
0.134 
0.168 
0.353 
0.035 
0.038 
0.163 
0.170 

0.088 
0.119 
0.171 
0.382 
0.067 
0.077 
0.163 
0.172 

0.080 
0.189 
0.240 
0.275 
0.097 
0.093 
0.326 
0.315 

0.086 
0.193 
0.325 
0.364 
0.167 
0.178 
0.278 
0.276 

0.087 
0.188 
0.324 
0.372 
0.189 
0.215 
0.269 
0.271 

0.037 
0.141 
0.297 
0.346 
0.166 
0.187 
0.211 
0.219 

0.091 
0.265 
0.226 
0.309 
0.045 
0.037 
0.380 
0.370 

0.076 
0.183 
0.227 
0.325 
0.088 
0.089 
0.288 
0.285 

0.079 
0.202 
0.289 
0.398 
0.145 
0.164 
0.274 
0.279 

0.026 
0.135 
0.270 
0.365 
0.162 
0.174 
0.227 
0.240 

0.071 
0.346 
0.240 
0.339 
0.018 
0.017 
0.450 
0.442 

0.084 
0.233 
0.208 
0.297 
0.056 
0.057 
0.334 
0.331 

0.065 
0.158 
0.228 
0.336 
0.088 
0.089 
0.281 
0.267 

0.039 
0.146 
0.248 
0.359 
0.141 
0.153 
0.229 
0.235 

t Based on N=\9. 

The commonly utilized Reality Check (RCMSE), which normally is a very 

conservative test, provides inconsistent size control. Increases in P causes the empirical 

size to diminish, but it rises as m and R increase. As discussed earlier, the MSE-type 

statistic used in the common Reality Check is inappropriate for nested models, so in an 
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attempt to correct for this I introduce the use of an alternative loss function based on 

the £7VC-type statistic, RCENC. This reformulated Reality Check provides more sensible 

responses to increases in R, P and m, but the test is now heavily oversized under almost 

all the conditions. It is possible that the RCENC may correct for some of the size and 

power problems shown in nested model studies, but this is outside the scope of this paper 

and left for future research. 

The EPA test is heavily oversized under all conditions examined. The empirical size 

results have the following properties: size decreases as m increases, but increases in P 

and R cause inconsistent changes in empirical size. 

The simulated raw power results for the various methods are presented in Table 2. 

Lloyd (2005) demonstrates that the examination of raw power for competing tests can 

lead to incorrect conclusions. He presents a size-adjustment method which takes into 

account the empirical size to power relationship for a given statistic, receiver operating 

characteristic curve (ROC), to provide a means of size-adjusting power. His 

methodology assumes the comparison of different test statistics: this is not the case for 

many of my tests, which may lead to an inappropriate size-adjustment methodology. 

Based on simulated size and power distributions, it was determined that an increase in 

R and P should result in an increase in power, and increases in m will cause a drop in 

power. Consistent with the simulated expectations raw power increases in P and 

decreases in m for all methods; except that both RCMSE and RCMSEt display opposite 

relationships. Contrary to expectations, increases in R result in a drop in raw power. 

Empirical size decreases significantly with increases in R, which may be dominating 

these raw power results. 
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Table 2: Empirical raw power for nominal 0.10 tests for one-step-ahead predictions 

m = 2 m=4 
P = 40 P=100 P = 200 P = 40 P=100 P = 200 

R = 40 

R=100 

Ft = 200 

R = 400 

MMC 
HW2010 
CPA 
EPA 
RCMSE 
RCMSEt 
RCENC 
RCENCt 

MMC 
HW2010 
CPA 
EPA 
RCMSE 
RCMSEt 
RCENC 
RCENCt 

MMC 
HW2010 
CPA 
EPA 
RCMSE 
RCMSEt 
RCENC 
RCENCt 

MMCf 

HW2010 
CPA 
EPA 
RCMSE 
RCMSEt 
RCENC 
RCENCt 

0.362 
0.531 
0.500 
0.658 
0.149 
0.151 
0.395 
0.409 

0.337 
0.551 
0.500 
0.708 
0.165 
0.181 
0.322 
0.340 

0.332 
0.516 
0.527 
0.695 
0.152 
0.176 
0.244 
0.275 

0.191 
0.478 
0.501 
0.714 
0.118 
0.151 
0.164 
0.199 

0.588 
0.806 
0.747 
0.869 
0.106 
0.108 
0.554 
0.576 

0.645 
0.807 
0.784 
0.888 
0.144 
0.149 
0.408 
0.428 

0.601 
0.777 
0.808 
0.919 
0.112 
0.132 
0.290 
0.305 

0.497 
0.755 
0.837 
0.924 
0.122 
0.149 
0.207 
0.234 

0.787 
0.963 
0.946 
0.979 
0.089 
0.088 
0.720 
0.752 

0.851 
0.948 
0.941 
0.976 
0.102 
0.103 
0.511 
0.530 

0.834 
0.919 
0.942 
0.983 
0.083 
0.094 
0.350 
0.368 

0.747 
0.886 
0.958 
0.977 
0.098 
0.126 
0.248 
0.267 

0.192 
0.358 
0.391 
0.449 
0.161 
0.167 
0.394 
0.395 

0.194 
0.397 
0.474 
0.531 
0.231 
0.241 
0.386 
0.375 

0.177 
0.352 
0.495 
0.544 
0.228 
0.236 
0.352 
0.343 

0.147 
0.279 
0.495 
0.560 
0.221 
0.233 
0.301 
0.285 

0.310 
0.599 
0.553 
0.636 
0.117 
0.118 
0.553 
0.546 

0.344 
0.569 
0.625 
0.719 
0.157 
0.154 
0.464 
0.444 

0.323 
0.526 
0.681 
0.775 
0.212 
0.208 
0.417 
0.405 

0.312 
0.504 
0.731 
0.820 
0.211 
0.218 
0.349 
0.338 

0.465 
0.831 
0.766 
0.845 
0.080 
0.076 
0.729 
0.722 

0.543 
0.785 
0.801 
0.866 
0.138 
0.129 
0.607 
0.588 

0.504 
0.724 
0.817 
0.875 
0.158 
0.160 
0.477 
0.460 

0.462 
0.705 
0.908 
0.942 
0.185 
0.180 
0.375 
0.350 

t Based on N=19. 
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5 Conclusion 

The bootstrap procedures and the use of tabulated asymptotic critical values are 

oversized when the null model is highly persistent and small finite sample sizes. This 

simulation study demonstrates that the maximized Monte Carlo method provides good 

size control, even under the smallest sample size tested. Raw power for the MMC 

procedure is in line with expectations based sample and prediction sizes and the number 

of competing models. Although the raw power of the MMC procedure is lower than 

competing methods, it is due in a large part to the oversized nature of the competing 

procedures. 

This study introduces Reality Checks altered to incorporate the conceptual design of 

the encompassing test statistics, which intuitively should correct for the inappropriate use 

of either White's or Hansen's Reality Check when all competing models nest the 

benchmark model. However, these novel statistics perform poorly both in terms of size 

control and raw power in the simulation results. 

6 Future research 

I show through simulation that the MMC procedure provides good size control, 

compared to several other procedures, in the case of nested models of a highly persistent 

process. The next logical extension is to determine if there is a size problem in the case 

where at least one of the alternative models does not nest the benchmark model (non­

nested). This has two implications: the appropriate test statistic changes from an 

ENC-type to MSE-type, and identifying if any of the leading MSE-based procedures 

have a size problem near the boundary. 
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Another natural extension is to use the MMC procedure to examine models of 

known highly persistent processes, like exchange rates, oil price, and stock price returns. 

Test for unit roots on these series generally yield inconsistent identification of a unit root, 

due to the weak power properties of these tests. This poses a problem for many of the 

bootstrap methods examined in this study. However, the MMC procedure retains it size 

control with good power, even when testing multiple models that are all close to the unit 

root boundary, making it an ideal option. 
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8 Appendices 

Appendix A: Effect of the number of draws on the MMC method 

This appendix details the effect of the choice of N on the simulation results. This is 

important because the results presented in table 2 for i?=400 are based on N=\9 rather 

than N=99, as was the case for the other choices of R. 

It is apparent from the table below that the MMC method becomes more conservative 

as N decreases, concurrently the power of the method is also diminished. The computing 

time, which is proportional to the number of calls to simulated annealing, decreases 

substantially for this simulation study as N is reduced from 99 to 19. 

Table 3: Empirical Size and Power Properties of the MMC Method as N varies 

Size Power 
N = 99 N = 19 £ N = 99 N=19 £ 

0.067 
0.061 
0.063 

0.087 
0.079 
0.065 

0.012 
0.029 
0.048 

0.063 
0.029 
0.066 

0.055 
0.032 
0.015 

0.024 
0.050 

-0.001 

0.332 
0.601 
0.834 

0.177 
0.323 
0.504 

0.197 
0.452 
0.732 

0.102 
0.229 
0.424 

0.135 
0.149 
0.102 

0.075 
0.094 
0.080 

m =2 

m =4 

P = 40 
P = 100 
P = 200 

P = 40 
P = 100 
P = 200 
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Appendix B: Cumulative distribution curves for the ENC-t statistic for a highly persistent process 

Critical values for a statistic are generally identified based on the CDF The 

following charts are the complementary CDF for the simulated PDF curves in figures 1 

and 2, respectively 

Figure 3: Simulated CDF curves for ENC-t at different levels of persistence 

CDF(0 99) • CDF(0 50) CDF Standard Normal 

in 

Notes All distributions presented are simulated The Standard Normal CDF is generated from 500,000 

draws from the normal distribution The ENC-t distributions are based on 50,000 simulations of the 

ENC-t statistic for a single alternative model versus a benchmark model that is the null DGP The 

simulation design is outlined in section 3, with 0 99 and 0 50 representing the lag dependent coefficient 

in the null DGP, rolling window of 100 regression observations with 100 one-step-ahead predictions 

The dashed line is the right-tailed 95th percentile cut-off for the standard normal distribution 
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Figure 4: Simulated ENC-t CDF varying P and R, highly persistent processes 

1 

0 9 

0 8 

0 7 

0 6 

0 5 

0 4 

0 3 

0 2 

01 

0 
L n ^ - c o c M - i - o - i - C M c O ' ^ - L r ) 

• i i i i 

R=100,P=100 R=100,P=400 R=400,P=100 

R=400,P=400 CDF Standard Normal 

Notes See Figure 3 notes for simulation specifics The distributions are based on simulations where 

the lag dependent parameter is 0 99, and the number of regression observations (R) and one-step-ahead 

predictions (P) vary 
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Appendix C: Size and power of statistical test procedures 

There are two ways in which a test procedure can result in erroneous conclusions: 

• type I error: the null hypothesis is true and the test procedure rejects, and 

• type II error: the null hypothesis is false and the test procedure fails to reject. 

The size of a test procedure (or significance level) is the probability of type I error, 

usually denoted with a. In general, the size of the test, often 10 or 5 per cent, is chosen at 

the discretion of the analyst and critical values are taken from asymptotic tables (in many 

cases generated via simulation). However, if the conditions of the test procedure are not 

consistent with the asymptotic conditions, then the asymptotic critical values can be 

inappropriate resulting in either over- or under-reject the null hypothesis: termed 

oversized and undersized, respectively. 

The probability of type II error is usually denoted with (3, and the power of the test is 

l-p\ So for a given a, it is desirable to have the highest power possible, or lowest p\ 

which minimized the possibility of committing either type of error. 

In the body of the text, I use the term "raw power" which is used to describe the 

power obtained from the simulation study, based on an analyst-specified a which pairs 

with a simulated size. Lloyd (2005) provides a means of obtaining a "size-adjusted 

power" from the test procedure's ROC curve, which is developed from the raw power 

and simulated size as a ranges from zero to one. The size-adjusted power is then simply 

the raw power whose simulated size matches the analyst-specified a. So for oversized 

test procedures the a used to obtain the size-adjusted power will be lower than the 

desired a, and vice versa for undersized test procedures. This method is useful when 

comparing test procedures that use different statistics, but can become irrelevant for the 
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same statistic since it could have the identical distribution, and size-adjusted power, 

with competing test procedures. 

An ad hoc, but commonly used, method of computing a size-adjusted power is to use 

raw power less simulated size plus predetermined a. This is generally appropriate to 

obtain inferences on each procedure and statistic. 


